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Partially ionized hydrogen plasma in strong magnetic fields
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We study the thermodynamic properties of a partially ionized hydrogen plasma in strong magnetic fields,
B;1012– 1013 G, typical of neutron stars. The properties of the plasma depend significantly on the quantum-
mechanical sizes and binding energies of the atoms, which are strongly modified by thermal motion across the
field. We use new fitting formulas for the atomic binding energies and sizes, based on accurate numerical
calculations and valid for any state of motion of the atom. In particular, we take into account decentered atomic
states, neglected in previous studies of thermodynamics of magnetized plasmas. We also employ analytic fits
for the thermodynamic functions of nonideal fully ionized electron-ion Coulomb plasmas. This enables us to
construct an analytic model of the free energy. An ionization equilibrium equation is derived, taking into
account the strong magnetic field effects and the nonideality effects. This equation is solved by an iteration
technique. Ionization degrees, occupancies, and the equation of state are calculated.@S1063-651X~99!01308-2#

PACS number~s!: 52.25.Kn, 05.70.Ce, 95.30.Qd, 97.60.Jd
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I. INTRODUCTION

Magnetic fieldsB;1012– 1013G typical of isolated neu-
tron stars qualitatively modify many physical properties
matter~see Refs.@1,2# for reviews!. In this paper we calcu-
late the thermodynamic properties of a strongly magneti
hydrogen plasma at temperatureT;105.0– 106.5 K, which
may compose outer neutron-star envelopes@3–5#. As we
shall see, the plasma under these conditions can be par
ionized, and the quantum-mechanical properties of both
electrons and bound species~primarily hydrogen atoms! are
strongly modified by the field, which thereby affects the th
modynamics.

The motion of charged particles in a magnetic field
quantized into Landau orbitals. The magnetic field is cal
strongly quantizingif the free electrons populate mostly th
ground Landau level@2#. This is the situation which we ar
especially interested in. It occurs when the electron cyclot
energy\vc5\eB/(mec) ~where \, e, me , and c are the
Planck constant, electron charge, electron mass, and spe
light, respectively! exceeds both the thermal energykBT and
the electron Fermi energyeF—that is, for temperaturesT
!TB and densitiesr,rB , where

TB53.163105g K, rB50.809g3/2 g cm23 ~1!

~see Sec. III A 1!. Here, the parameterg5\3B/(me
2ce3)

5B/(2.353109 G) is the electron cyclotron energy i
atomic units.

We will refer to astrong magnetic field wheng@1. A
number of studies of the equation of state~EOS! of matter in
strong magnetic fields were based on various modificati
of the Thomas-Fermi approximation@6–9#. This approxima-
tion works reasonably well at larger and for large ion charge
Zi . Abrahams and Shapiro@8# estimate its validity range a
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which atoms are present in the plasma and contribute to
EOS.

The atom in a strong magnetic fieldg@1 is compressed
in the transverse directions to the size of the ‘‘magne
length’’:

am5~\c/eB!1/25a0g21/2, ~2!

wherea05\2/(mee
2) is the Bohr radius. The ground-sta

binding energy grows logarithmically withB and exceeds the
ground-state energy of the field-free atom by order of m
nitude atB;1012G @1#. Ionization equilibrium of atoms in
strong magnetic fields was first discussed by Gnedinet al.
@10# and Khersonskii@11#. Khersonskii@12# considered also
dissociation equilibrium of H2

1 species. However, these pio
neering works neglected modifications of the atomic prop
ties caused by the thermal motion of the atoms across
field.

The motional modifications of quantum-mechanical ch
acteristics of the atom arise from the coupling between
center-of-mass motion across the field and the rela
electron-proton motion@13–17#. The role of these effects
was appreciated by Venturaet al. @18#, who, however, did
not treat them quantitatively. An increase of the nonioniz
fraction caused by the motion effects was mentioned by P
lov and Mészáros @16#, who used perturbation theory appl
cable to atoms only slightly distorted from their rest-sta
cylindrical shape. Quantum-mechanical calculations of bi
ing energies and wave functions of hydrogen atoms inany
states of motion in the strong magnetic fields have been
ried out only recently@15,17#.

Lai and Salpeter@19,20# evaluated the effects of motio
on the ionization equilibrium using an approximation for t
binding energies of moving atoms which does not apply
the so-calleddecentered states, for which the electron-proton
separation is large@14,15,17#. Nonideality effects were in-
cluded in the ionization equilibrium equation only as
pressure-ionization factor forr@102 g cm23. As a result,
2193 © 1999 The American Physical Society
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2194 PRE 60POTEKHIN, CHABRIER, AND SHIBANOV
this equation contains a factor which diverges~and becomes
even negative! at sufficiently high temperatures.

Recently, Steinberget al. @21# calculated the second viria
coefficient of the proton-electron plasma in arbitrary ma
netic field and constructed an EOS at low densities. T
bound states were included using the Planck-Larkin parti
function. This approach yields correct EOS at the low d
sity where the virial expansion holds@22#. However, the
Planck-Larkin formalism fails at higher densities, where o
has to resort to the chemical picture of the plasma, as
cussed in detail, e.g., by Da¨ppen et al. @23#. In addition,
atomic binding energies were calculated in@21# using ap-
proximations@19# which have very restricted applicability a
shown in@24#.

In this paper we use new fitting formulas to atomic en
gies and sizes@24# based on a previous numerical study@17#,
valid for any state of atomic motion. The molecular H2 frac-
tion is evaluated following the approach of Lai and Salpe
@20# but with a modified treatment of nonideality. Ou
knowledge of the quantum-mechanical properties of m
ecules in a strong magnetic field is still incomplete, but
evaluation of the molecular fraction is useful to determ
the validity domain of our EOS at relatively low temper
tures~where the molecules dominate!.

The next section presents a simple thermodynamic mo
of the hydrogen plasma. The model is tested in the nonm
netic case by comparison with more elaborate models, an
shown to provide sufficient accuracy at highT where the
molecular fraction is small. In Sec. III, we consider a ful
ionized plasma in a strong magnetic field. The partial ioni
tion and dissociation are discussed in Sec. IV, where an
lytic model of the plasma free energy is constructed and
ionization equilibrium equation is derived. Numerical resu
are presented and discussed in Sec. V.

II. THERMODYNAMIC MODEL: THE ZERO-FIELD CASE

A. Chemical picture of the plasma

A theoretical description of partially ionized plasmas c
be based either on the physical picture or on the chem
picture of the plasma@22#. In the chemical picture, boun
species~atoms, etc.! are treated as elementary entities alo
with free electrons and nuclei. In the physical picture, nuc
and electrons~free and bound! are the only fundamental con
stituents of the thermodynamic ensemble. The relative me
of the two approaches have been discussed, e.g., in@25,26#.

We use the so-called occupation probability formalism
frames of the chemical picture. Occupation probabiliti
which ensure convergence of the internal partition functio
~IPF!, were first introduced by Fermi@27#, who has demon-
strated their immanent relation to a nonideal contribution
the Helmholtz free energy. Various approaches to the c
struction of the occupation probabilities have been review
by Hummer and Mihalas@28#. The approach adopted by M
halas and co-workers@28–30# ~hereafter MDH! is based on
the Inglis-Teller criterion of Stark broadening convention
for plasma spectroscopy, which gives optical spectra con
tent with available experiments~see, e.g., Ref.@23#!. How-
ever, the equation of state derived by MDH is unrealistic
r*1022 g cm23 ~see@31#!, and the approximations made
its derivation are lacking in self-consistency@32#. An alter-
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native EOS was derived in a self-consistent manner by S
mon and Chabrier@26,31,33,34# ~hereafter SC! from effec-
tive pair potentials between plasma particles, but w
neglect of the Stark broadening. The ionization degree
duced by SC strongly differs from that by MDH. The orig
of the discrepancy is rooted in the fact that strongly p
turbed atoms, whose spectral lines disappear due to the S
merging, may still contribute to the EOS as bound spec
@35#. Thus the approaches of MDH and SC are reconciled
an approximate treatment of the atoms perturbed by pla
ions as quasicontinuum atomic states, which contribute to
EOS as atoms although they do not show atomic spec
lines @32#.

The chemical picture faces a principal difficulty in cas
where the interaction between nuclei and electrons in
bound state is comparable to the interaction between a bo
object and neighboring plasma particles. This situation
curs when pressure ionization is important or when h
atomic levels are appreciably populated. In these case
special term should be included into the free-energy mo
in order to distinguish between bound and free states.
instance, MDH constructed anad hoc ‘‘pressure ionization
term’’ in the free energy@29#, SC introduced hard cores wit
fixed diameters in the effective potentials for bound spec
@34#, and exponential ‘‘unbinding’’ occupation probabilitie
were used in@32#. The latter approach has been justified
considering an excluded volume of the bound objects at r
tively low density, assuming an uncorrelated distribution
the plasma particles. At high density, the strong correlati
of the positions of the particles must be taken into accou
Their approximate treatment in the hard-sphere model~e.g.,
by SC! appears to be practical for this purpose.

In the case of the strong magnetic field, the model of
plasma cannot be as detailed as, e.g., the SC nonmag
model, because the effective potentials~partly derived from
high-pressure experiments in the zero-field case! are not
available. Therefore we use a simple hard-sphere picture
scribed below. In order to check the validity of this mod
we apply the same assumptions to the well-studied zero-fi
case and compare the results with those of more elabor
models.

B. Free-energy model

Consider a plasma consisting of electrons, protons, an
atoms in a volumeV. Let us write the Helmholtz free energ
asF5F id1Fex, where

F id5F id
~e!1F id

~p!1F id
neu1F rad ~3!

is the sum of the ideal-gas free energies of the electro
protons, neutral species, and photons~thermal radiation!, re-
spectively, andFex is theexcess~nonideal! part.

1. Ideal part of the free energy

We consider nondegenerate protons and neglect their
statistics both in bound and free states~this amounts to an
additive constant in the entropy that affects neither ionizat
equilibrium nor the EOS, provided the total number of fr
and bound protons,N0 , is fixed!. Then

bF id
~p!/Np5 ln~nplp

3!21, ~4!
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PRE 60 2195PARTIALLY IONIZED HYDROGEN PLASMA IN STRONG . . .
where b[(kBT)21. Here and hereafter,Na , na , and la
[(2pb\2/ma)1/2 denote, respectively, the total numbe
number density, and thermal wavelength of particles of ty
a with massma .

For the ideal gas of electrons, we use the identity@36#

F id
~e!5meNe2PeV, ~5!

whereme andPe are the chemical potential and pressure
the ideal Fermi gas, respectively, which can be obtained
functions ofne andT from the equations

Pe5
8

3Ap

kBT

le
3 I 3/2~bme!, ~6!

ne5
4

Aple
3

I 1/2~bme!. ~7!

Here,

I n~z![E
0

` xn

exp~x2z!11
dx ~8!

is the Fermi integral. With the use of Pade´ approximants to
the functionsI n(z) and their inverse functions@37#, F id

(e) is
expressed as an analytic function ofNe , V, andT.

In the zero-temperature limit, one may replaceI n(bme)
by (beF)n11/(n11), which gives, in particular, the well
known expression

eF5
\2

2me
~3p2ne!

2/3. ~9!

The Fermi temperature is defined asTF[eF /kB'3
3105r̂2/3K, where r̂51.6735ne /(1024cm23) is the mass
density of the electron-proton plasma in g cm23. In the non-
degenerate limitT@TF , the ideal Boltzmann gas relation
are recovered,me5kBT ln(nele

3/2) andPe5nekBT.
For the atoms, one has

F id
H5kBT(

k
Nk@ ln~nklH

3 /gk!212bxk#, ~10!

wherek enumerates quantum states with statistical weig
gk and binding energiesxk .

It should be noted that, although nonideality effects
not included inF id explicitly, they do affect the equilibrium
value ofF id through particle numbers. In particular, the d
tribution of Nk in Eq. ~10! is not assumed to obey the idea
gas Boltzmann law.

Finally, the radiation term~which can be important only
at low r or very highT! reads

F rad52~4s/3c!VT4, ~11!

wheres5p2kB
4/(60\3c2) is the Stefan-Boltzmann constan

2. Excess free energy

The excess free energy is conventionally written as

Fex5Fex
C 1Fex

neu, ~12!
e

f
as

ts

e

whereFex
C is the excess free energy of the ionized part of

plasma andFex
neu accounts for interactions of neutral speci

with electrons, protons, and other neutral species. The C
lomb term

Fex
C 5Fii 1Fee1Fie ~13!

includes contributions from the exchange and correlation
teractions of electronsFee, Coulomb interactions in the one
component plasma~OCP! of ions Fii , and ion-electron
~screening! interactionFie . These contributions have bee
calculated by various procedures, e.g., by solving a se
hypernetted-chain equations or Monte Carlo simulatio
@38–42#. We make use of the fitting formulas to the resu
of such calculations, obtained in@39# for Fee and in@41# for
Fii andFie . These formulas express the electron-ion plas
free energy as an analytic function of the electron den
parameter

r s5ae /a0'1.39r̂21/3 ~14!

and Coulomb coupling parameter

G5be2/ae'0.227r̂1/3/T6 , ~15!

whereae5(4pne/3)21/3 is the mean interelectron distanc
andT6[T/106 K.

The nonideal part of the atomic free energy,Fex
neu, can be

written as@33,34#

Fex
neu5FHS1Fpert, ~16!

whereFHS is the reference free energy, treated in the ha
sphere approximation, andFpert is the perturbation part tha
accounts for the attractive~van der Waals! interactions. To
calculate these contributions, an elaborate model has b
developed by SC@33,34#. Its simplified analytic version for
weak electron degeneracy has been constructed in@32#. In
the so-called van der Waals one-fluid model@43#, a free en-
ergy of the hard-sphere mixture is represented by
Carnahan-Starling formula@44#

bFHS/Ntot5~4h23h2!/~12h!2, ~17!

whereNtot5(aNa is the total number of particles,

h5
p

6NtotV
(
aa8

NaNa8daa8
3 , ~18!

is the effective packing fraction, anddaa8 are the hard-
sphere interaction diameters. In our case, the subscripa
enumerates atomic quantum states described by quan
numbersk and takes on a single valuep for the free protons.

In the following, we compare two versions of the mode
~i! the full version, in whichFpert and daa8 are given by
approximations of@32#, with one exception~adopted from
@34#! that daa8 cannot be smaller than a certain limitdaa8

(0) ,
and ~ii ! the simpleversion, in which long-range atomic in
teractions are disregarded. In the latter case,Fpert50 and
daa85daa8

(0) . Furthermore, we adopt the simplest choice

dkk8
~0!

5 l k1 l k8 , dkp
~0!5 l k , ~19!
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FIG. 1. Comparison of the fraction of neutra
atoms f H5nH /n0 given by SC tables~short-
dashed line! and by two present versions of th
thermodynamic model of partially ionized atom
hydrogen~see text!. The long-dashed line corre
sponds to the fraction of atoms that satisfy t
Inglis-Teller criterion. The dotted line is given b
the usual Saha equation for ground-state atom
d
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wherel k is the root-mean-square proton-electron distance
the quantum statek @45#. For the interactions among charge
particles, we definedaa850, because this type of interactio
is already included in the Coulomb part of the free ener
Note that in the second~simple! version of the model,FHS
turns into the unbinding termFub of Ref. @32# in the low-
density limit (h!1). Thus the unbinding term is now inco
porated inFHS, which allows us to approximately take int
account the correlation effects.

C. Equilibrium conditions

Thermodynamic equilibrium is given by the minimizatio
of F(V,T,$Na%) with respect to the particle numbersNa
under stoichiometric constraints. The condition of the ext
mum of F can be written in the form of the Saha equati
corrected for nonideality and electron degeneracy:

nH5npnele
3~mp /mH!3/2~Zw/2!eL, ~20!

where

L5b]F id
~e!/]Ne2 ln~nele

3/2! ~21!

allows for electron degeneracy and

Zw5(
k

gkwkebxk ~22!

is the modified IPF which includes the occupation probab
ties wk , defined according to@32#:

kBT ln wk5
]Fex

]Np
1

]Fex

]Ne
2

]Fex

]Nk
. ~23!

To solve Eq.~20!, one must add the electroneutrality cond
tion ne5np and the mass conservation conditionnH1np

5n0 , wheren05r/mH5(r/11.293 g cm23)a0
23.

The Boltzmann distribution of the atoms, corrected
nonideality, reads

nk5nHgkwkebxk/Zw . ~24!

The minimum of the free energy is sought by solving E
~20!–~24! iteratively @32#. First, one defines startingwk’s
in

.

-

-

r

.

and calculates the number densities from Eqs.~20! and~24!.
Then thewk’s are refined using these number densities in E
~23! @46#.

The molecules H2 can be easily included in this proce
dure. The dissociation-recombination equation reads

nH2
5nH

2 ~lH& !3Zw2 /Zw
2 , ~25!

where Zw2 is the molecular IPF, modified by multiplying
eachkth term by an occupation probabilitywk

H2 @32#, given
by

kBT ln wk
H252S ]Fex

]Np
1

]Fex

]Ne
D2

]Fex

]Nk
H2

. ~26!

For simplicity, we do not include molecules in the prese
versions of the model, because the fraction of H2 is small in
the range ofr andT which we are interested in.

After the equilibrium distribution of plasma particles
found, the pressureP, internal energyU, and entropyS are
calculated from the relations

P52~]F/]V!T,$Na% , U5@]~bF !/]b#V,$Na% , ~27!

S5(U2F)/T. The higher-order thermodynamic quantitie
are obtained by differentiation ofP,U,Swithout keepingNa
fixed @36#.

D. Results of comparison

The ionization curves given by different versions of t
model are compared in Fig. 1 forT5104.5K. Although the
neglect of the perturbation terms introduced in the sim
version is most perceptible at such relatively low tempe
tures, the ‘‘full’’ and ‘‘simple’’ versions of the model yield
practically identical atomic fractionsf H[nH /n0 .

The results of SC@31# qualitatively agree with the presen
model. Quantitatively, they differ in the pressure-ionizati
region atr.0.1 g cm23, where the theoretical uncertainty
largest~see Sec. IIA!. The difference in the low-density re
gime r,1024 g cm23 is due to highly excited states. If bot
the effective diameterd and statistical weightgn are propor-
tional ton2 ~n being the principal quantum number!, then the
neutral fraction should asymptotically decrease at low d
sity as f H}r1/2. Our present model exhibits this asymptot
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behavior; the dependencef H}r1/3 seen at lowr in the SC
data might result from a choiced}n.

The long-dashed curve represents the fraction of ato
satisfying the Inglis-Teller criterion:f IT5(nkw̃k /n0 . Here,
w̃k is the probability that a given atom is not strongly pe
turbed by plasma microfields; it is estimated from Eq.~31! of
Ref. @32#. Using f IT , we have calculated monochromat
opacities of the plasma and compared them with the OP
monochromatic opacities@47# ~at r<10T6

3 g cm23 where the
OPAL data exist!. Along the isotherm shown in Fig. 1, ou
results agree with OPAL within 12% in the photon ener
range from 13.6 eV to 500 eV where the opacity is dom
nated by bound-free atomic absorption. For comparison,
drogen opacities calculated in@48# differ from OPAL by up
to 37%~in the same range of energy and density at the sa
T!.

Figure 2 demonstrates that the EOSs obtained with
full and simple versions of our model practically coincide.
the region of weak degeneracy, they also coincide with
model presented in@32#. Moreover, there is a good agre
ment with the SC model@31#. Small differences occur only
in the regions where the SC model predicts an appreci
amount of molecules, as explained in@32#.

As is well known, the second-order quantities are m
sensitive to the details of the thermodynamic model than
first-order ones. The adiabatic temperature gradient

¹ad5~] ln T/] ln P!S ~28!

is shown in Fig. 3. There are only tiny differences betwe
the full and simple versions. For comparison, we also sh
¹ad from other models. In its validity region~i.e., at low
density!, the model @32# approximately agrees with th
present one. The differences with predictions of SC
somewhat larger. In all models, the isotherms ‘‘wiggle’’
the region of consecutive pressure destruction of exc
atomic states. Such wiggles are absent in the OPAL d

FIG. 2. Comparison of two present versions of the EOS of p
tially ionized atomic hydrogen~see text! with Refs. @31# ~SC! and
@32#. The EOS of ideal fully ionized gas is also shown.
s
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@49#, based on the physical picture of the plasma and a
shown in Fig. 3. Compared to SC, the present data tend t
closer to the OPAL data. We conclude that the simplific
tions introduced above are acceptable to describe the the
dynamics of atomic hydrogen. In Sec. IV, we generalize
model to the case of the strong magnetic field.

III. FULLY IONIZED PLASMA IN A STRONG MAGNETIC
FIELD

In this section, we describe effects of quantizing magne
fields on the fully ionized proton-electron plasma. We a
sume that the fieldB is uniform and directed along thez axis.

A. Ideal gas

1. Electrons

The electron energy in a magnetic field reads@50#

eN~pz!5N\vc1pz
2/~2me!, ~29!

wherepz is the longitudinal momentum andN50,1,2 . . . is
the Landau quantum number. All levels except the low
one are double degenerate with respect to the spin projec
Strictly speaking, the anomalous magnetic moment of
electron leads to a splitting of the levelsN>1 by
0.001 16\vc , which takes off the double degeneracy. Ho
ever, this splitting cannot affect the thermodynamics ar
,rB , wherekBT should be at least comparable to\vc for
an appreciable population of the excited Landau levels.

The thermodynamic functions of the electron gas in
magnetic field are easily derived from the first principl
@36#. Taking into account the fact that the number of qua
tum states of an electron with fixed discrete quantum nu
bers in volumeV per longitudinal momentum intervalDpz

equalsVDpz /(4p2am
2 \) @50#, the thermodynamic potentia

V52PV can be written as

r-
FIG. 3. Two adiabatic gradient isotherms given by differe

EOS models in the domain of partially ionized atomic hydrogen
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V52
VkBT

2p2am
2 \ (

N50

`

gNE
0

`

ln~11eb@me2eN~pz!#!dpz ,

wheregN is the statistical weight (g051 andgN52 for N
>1). Hence the electron pressure and number density
given by the equations

Pe5
kBT

p3/2am
2 le

(
N50

`

gNI 1/2~bmN!, ~30!

ne5
1

2p3/2am
2 le

(
N50

`

gNI 21/2~bmN!, ~31!

wheremN[me2N\vc . The Helmholtz free energy is give
by Eq. ~5!, whereme can be found by inversion of Eq.~31!
~e.g., using an algorithm described in@51#!.

In the nonquantizing magnetic fieldTB!T, where many
Landau levels are populated, the sum overN in Eqs. ~30!,
~31! may be approximated by an integral, and integration
parts reproduces Eqs.~6!, ~7!.

In the domain of strong magnetic quantization,T!TB and
r,rB , one may retain only the termN50. In that case,
replacingI 21/2(bme) by 2AbeF in Eq. ~31! ~by analogy with
Sec. II B! yields the Fermi energy

eF5
2p4\2

me
~am

2 ne!
2. ~32!

By definition, r5rB at eF5\vc . Hence r/rB

53p(2gr s
2)23/2, from which Eq.~1! follows. A comparison

of Eqs.~9! and~32! reveals that the Fermi energy changes
a factor (4/3)2/3(r/rB)4/3. Thus the degeneracy is strong
reduced atr!rB .

In the nondegenerate regimeT@TF , one hasI n(bme)
'exp(bme)G(n11); therefore Eqs.~30!, ~31! reduce toPe
5nekBT and

bme5 ln~nele
3/2!2 ln u1 ln~ tanhu!, ~33!

where u[b\vc/25TB /(2T). This yields an explicit ana-
lytic form for F id

(e) . In the nonquantizing field,TB!T, the
last two terms in Eq.~33! cancel out, and the classical e
pression~Sec. II B! is recovered. In the strongly quantizin
regime r,rB and TF!T!TB , the last term of Eq.~33!
vanishes, which yields

F id
~e!5NekBT@ ln~2pam

2 lene!21#. ~34!

2. Protons

The transverse motion of protons is quantized in Land
orbitals with the elementary excitation equal to the pro
cyclotron energy\vcp5(me /mp)\vc . The energy spec
trum is given by Eq.~29! when replacingme by mp andvc
by vcp . Unlike the case of electrons, the double-spin deg
eracy of the Landau levels is taken off by the abnormal m
netic moment of the proton.

In our analysis, the protons are always nondegenerate
that by analogy with Eq.~34! we have

bF id
~p!/Np5 ln~2pam

2 lpnp!1 ln@12e2b\vcp#21. ~35!
re

y

y

u
n

-
-

so

Here, for sake of brevity, we drop the zero-point ener
1
2\vcp and the spin energy6 1

4gp\vcp , wheregp55.585 is
the proton spin gyromagnetic factor@50#. We suppress thes
terms also for atoms and molecules. Taking them into
count yields an additive contribution to the total free ener
of the system, equal to

DF5N0H 1

2
\vcp2kBT ln@2 cosh~bgp\vcp/4!#J ~36!

(N05Np in the case of full ionization!. SinceN0 is constant,
DF affects neither ionization equilibrium nor pressure, bu
does affect the internal energy and specific heat; therefore
take it into account in Sec. V.

B. Nonideal Coulomb plasma

According to the Bohr–van Leeuwen theorem, a magne
field does not affect the thermodynamics of classical char
particle systems~see, e.g., Ref.@52#!. Thus the classical ionic
OCP excess free energyFii (G) does not depend onB at any
G. The classical regime for the electron-proton plasma c
responds tor s@1 andG!1, where the excess Coulomb fre
energy is given by the Debye-Hu¨ckel formula Fex

C

52NekBTA8G3/3. Indeed, it is easy to check that this la
holds independent ofB @8#.

A magnetic field, however, affects quantum-mechani
contributions toFex

C . These effects have been studied only
low-temperature or low-density regimes.

The ground-state exchange energy of the electron ga
the strongly quantizing field @7,53# behaves as
22.25(gr s

3)21@ ln(grs
2)20.4571¯#e2/a0 ~per electron!,

compared to20.75p21(9p/4)1/3r s
21e2/a0 in the nonmag-

netic case@54#. Thus the exchange energy atT!TF is sup-
pressed by a factor'0.2036gr s

2/@ ln(grs
2)20.457#. Note that

the condition of strong magnetic quantization requiresgr s
2 to

be large.
A general low-density expansion for the free energy o

Coulomb plasma in an arbitrary magnetic field up to ord
r5/2 has been derived by Cornu@52#. The coefficients of this
expansion are not available in explicit analytic form but r
quire numerical evaluation, which has not been done yet
the particular case of the OCP, a Wigner-Kirkwood-type e
pansion in powers of\ is available@52#. The lowest-order
term of the latter expansion~quantum diffraction term of
order\2) has been obtained by Alastuey and Jancovici@55#:

Fdiff5NekBT
G2

8r s
F 2

u tanhu
2

2

u2 1
1

3G , ~37!

with u defined as in Eq.~33!. The square brackets in Eq.~37!
go to 1 atu˜0, recovering the well-known zero-field resu
and to 1/3 atu@1, reflecting the fact that two of three de
grees of freedom for the electron motion are frozen out in
strongly quantizing field. Equation~37! is valid in the low-
density regime, wherer s@max(G,G21). In this regime the
correction~37! is smaller than the classical OCP correctio
to the Debye-Hu¨ckel formula. In the electron-ion plasma
Fdiff is canceled because of the local neutrality relation@52#.

In this paper, we are mainly interested in the case wh
(Gr s)

21'3.16T6*1. In this case, a high-temperature expa
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FIG. 4. Contribution to the electron-gas non
ideal free energyf ee5bFee/Ne beyond f DH

OCP5
2G3/2/) at three values of the magnetic fiel
parameterg and three values of the density pa
rameterr s ~indicated!. The scaled fit~solid lines;
see text! is compared with the high-temperatur
expansion up to orderse2 and e4 ~dotted and
dashed lines, respectively! and with the classical
OCP ~dot-dashed lines!.
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sion @56#, which can be written as an expansion in powers
two small parameterss15AG/r s ands25AG/r s , is relevant
at low densities. The lowest-order correction is the Hartr
Fock term}\2e2. Steinberget al. @21# have recently ob-
tained an analytic result for this term in a magnetic field:

bFHF

Ne
52

3G2

8r s
f 1~u!, ~38!

where the function

f 1~u!5
cosh~2u!

cosh2 u F tanhu

u G arctanh~A12u21 tanhu!

A12u21 tanhu
~39!

goes to 1 at smallu, reproducing the zero-field result@56#,
and to ln(4u)/u at very largeu.

Steinberget al. @21# have also calculated the correctio
}\e4 ~the Montroll-Ward and exchange terms!. For the elec-
tron gas, they can be written in the form

bF4

Ne
5

3Ap

16

G5/2

Ar s

@ f 2
ee~u!1 f 3

ee~u!ln 2#, ~40!

where f 2
ee(u) and f 3

ee(u) go to 1 atu˜0, reproducing the
zero-field result@56#, and decrease at largeu.

In order to incorporate these results into the analytic fr
energy model, we employ a simple scaling procedure. In
fit for f ee(u,G)5bFee/Ne derived in@39#, whereu5T/TF
is the degeneracy parameter, we replace the zero-field v
u052(9p/4)22/3r s /G by

u* 5u0

11um /u0

11 f 1~u!~um /u0!exp~2um
21!

. ~41!

Here,um58g2r s
5/(9p2G)50.166u0g2r s

4 is the value of the
degeneracy parameter in the strongly quantizing field.

The scaling~41! reproduces limiting cases:~i! at r s@1,
the classical OCP expression is recovered, independent
other parameters;~ii ! in the nonquantizing regimegr s

2!1,
f

-

-
e

lue

of

we get the nonmagnetic valueu* 5u0 ; ~iii ! in the strongly
quantizing degenerate regimegr s

2@1 andum!1, the correct
value of the degeneracy parameteru* 5um is recovered; and
~iv! in the strongly quantizing nondegenerate regimegr s

2

@1 andum@1, the fit reproduces Eq.~38! in its range of
validity.

Figure 4 demonstrates the validity of the adopted mod
cation ofFee at G,1, for three values ofr s , for which the
quantum contributions toFex

C could appreciably affect ou
results. We plotdeparturesof Fee from the OCP Debye-
Hückel functionFDH

OCP, normalized toNekBT and divided for
convenience byG2. The dot-dashed line shows the classic
OCP free energy@41#, the dotted line displays thee2 correc-
tion ~38!, and the dashed line results from inclusion of thee4

corrections~40!.
The left panel presents the nonmagnetic case. The s

line shows the fit toFee @39#. The region of approximate
coincidence of the fit with the high-T expansion can be
adopted as the region of validity of the latter. At larger s , it
is restricted by the conditions2!1(G!r s

21), while at small
r s , the conditions1!1(G!r s

2) is more restrictive.
The middle and right panels show the modifications

Fee at two values of the magnetic field strength. One can
that the scaled fit satisfactorily reproduces the expansio
the validity range of the latter. Surprisingly, although t
scaling is based on the lowest-ordere2 term ~38!, the e4

terms~40! are also well reproduced.
For the electron-ion plasma, the screening contribut

Fie should be taken into account. AtB50, it has been cal-
culated in a number of papers~e.g., Refs.@39–41#! and fitted
by analytic expressions@41#. In a strongly quantizing mag
netic field, this contribution has been analytically evalua
only for a dense plasma at zero temperature using the lin
response theory@7#. Comparison with the analogous zer
field result@57# shows that the strongly quantizing magne
field increases the screening energy at high density by fa
0.8846g2r s

4. To our knowledge, there were no relevant c
culations at arbitrary degeneracy. In the regime of low d
generacy and weak Coulomb coupling, integral represe
tions of the low-density expansion coefficients have be
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obtained@21,52#. The contribution of ordere4 is given by
Eqs.~20!, ~21! of Ref. @21#. It is reproduced if to replacer s

by r s /( f 2
ep)2 in the nonmagnetic expression@56#. Here, f 2

ep

can be approximated~within 0.5%! as

f 2
ep5

1

2
1t0.9

arctanh@~12t !0.6#

2~12t !0.6 , ~42!

where t[tanh(0.4u)/(0.4u). We apply the scalingr s

˜r s /( f 2
ep)2 to the formula forFie(r s ,G) given in @41#.

IV. PARTIALLY IONIZED PLASMA

A. Hydrogen bound species in the strong magnetic field

1. Atoms

Only a brief summary of the properties of the hydrog
atom in a strong magnetic field is given below. See, e.g., R
@17# for details and references.

The motion of an atom in a magnetic fieldB can be con-
veniently described using the pseudomomentumK , the
quantum-mechanical constant of motion related to the a
age center-of-mass velocityv5“KE, whereE is the total
energy of the atom. If there were no Coulomb attraction,
energy would beE5ENs

' 1Kz
2/(2mH), where

ENs
' 5N\vc1~N1s!\vcp ~43!

is the energy of the transverse excitation,N is the electron
Landau number,s is thez projection of the relative proton
electron angular momentum, andKz

2/(2mH) is the kinetic
energy of motion along the field. The Coulomb interacti
mixes the Landau orbitals. Nevertheless, it is convenien
keep the quantum numbersN and s for enumerating the
quantum states atg@1. Then the energy of the atom can b
decomposed as follows:

ENsn~K !5ENsn
i

~K'!1ENs
' 1Kz

2/~2mH!, ~44!

whereENsn
i (K'),0 is the ‘‘longitudinal’’ energy, and the

quantum numbern enumerates the longitudinal excitation
At g@1, the states withNÞ0 or larges are subject to auto
ionization. Therefore we putN50 and suppress this quan
tum number hereafter. The binding energy is

xsn~K'!5uEsn
i

~K'!u2s\vcp . ~45!

In accordance with Sec. III A 2, the zero-point and sp
terms are subtracted from Eq.~43! and absorbed into Eq
~36!. Note that Eq.~36! is valid for the partially ionized
plasma provided that the IPF’s for atoms with opposite p
ton spin projections are identical. It is true under the assu
tion that the autoionization processes with proton spin
may be neglected on the plasma relaxation time scale.
adopt this assumption, because the plasma under cons
ation is rather dense and nonrelativistic. Otherwise, st
with binding energyxsn(K'),gp\vcp/2 should be ex-
cluded from the IPF for atoms with the negative proton s
projection.

At K50, the atom is axially symmetric, and its siz
transverse to the magnetic field can be approximated@1,24#
as l x5 l y'amAs11, while the longitudinal size is much
f.

r-

e

to

-
p-
p
e
er-
es

n

larger: l z;a0 /ln g for the tightly boundstates (n50) and
l z;a0n2 for the hydrogenlikestates (n>1). Longitudinal
energies of the former states grow asEi}(ln g)2, whereas the
energies of the latter states are relatively small,uEiu
;(e2/a0)(2n2)21, wheren is the integer part of (n11)/2.

An atom moving across the field acquires a constant
pole moment in the direction opposite to itsguiding center
r c5c(eB2)21B3K . When K' is small enough, the dipole
moment is also small, andEi is increased byK'

2 /(2msn
' ).

Here, msn
' is the so-calledeffective transverse mass, which

exceedsmH and grows with field strength. In this case th
average transverse velocity isv'5K' /msn

' . When K' ex-
ceeds some critical valueKc;102\/a0 , the atom becomes
decentered: v' reaches a maximum and starts to decrea
while the electron-proton separation approachesr c . Thus,
for the decentered states, the transverse pseudomome
K' characterizes electron-proton separation rather than
locity.

In the limiting case ofK'@g(n11/2)2\/a0 , the longitu-
dinal energies approach the asymptoteEi;2e2/r c . Note
that only the states withs50 may remain bound if they hav
such large values ofK' . Indeed, sinceEi is small for large
K' , the binding energy~45! becomes negative fors>1.
However, ats50 and arbitrarily largeK' , there still re-
mains an infinite number of truly bound states~enumerated
by n!, as has been strictly proved in@17#.

Since r c5a0
2K' /g\, the decentered states have hu

sizes atg,1; hence they are expected to be destroyed
collisions with surrounding particles in the laboratory and
white-dwarf atmospheres@58#. In neutron-star atmosphere
at g*103, however, the decentered states may be sign
cantly populated, as we shall see below.

Accurate numerical dependences of the atomic bind
energiesxsn(K') and sizesl sn(K') for 300<g<104 and
any K' have been obtained in@17,24#. In Ref. @24#, analytic
fits have been constructed for these quantities as function
g and K' , as well as for the critical pseudomomentumKc

and transverse massmsn
' as functions ofg, for variouss and

n. These fits are more suitable for studying the thermo
namics of hot plasmas than previous approximations@19#,
which were accurate only for the centered ground states
5n50 andK',Kc).

2. Other bound species

At sufficiently low T or highB, there may exist a consid
erable amount of molecules and ions in the hydrogen plas
The molecular ion H2

1 has been thoroughly investigated
B,1010G, including the dependence of binding energies
various electron-vibrational-rotational levels on the angle
tween the ion axis and the magnetic field direction@59#. For
stronger fields, only the parallel configuration has been c
sidered@12,60–62#. The ions H2

1 have negligible abundanc
in the strong field, owing to the small binding energy, co
pared to the atoms and H2 molecules@12,20#. The same is
probably true for H2 ions @20#.

H2 molecules have been studied in detail at various fi
strengths@60,61,63#. An interesting result is that the groun
state is unbound at 0.18,g,12.3 @63#. Fitting formulas for
the dissociation energies in the parallel configuration forg
*103 have been given in@20,61#. At such fields, the disso
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ciation energy grows}(ln g)2, approximately at the sam
rate as the atomic ground-state energy. The equilibrium
ternuclear distance decreases as 1/lng, being as small as
1/4a0 at B51012G, again roughly proportional to the long
tudinal size of the atom.

Moreover, strong magnetic fields stabilize polymer cha
HN aligned withB, as first suggested by Ruderman@64# and
later confirmed by Hartree-Fock calculations@60#. The spe-
cific quantum-mechanical properties of these species~e.g.,
their excitation spectra! are poorly known.

Motional effects on the molecules and chains in the stro
magnetic fields have not been studied. Therefore, one ca
construct a reliable EOS in the domain ofr,T,B where these
species are expected to dominate. For instance, Lai and
peter@20# estimated the effective transverse mass of HN asN
times the atomic effective mass,Nm00

' , and used it in the
dissociation equilibrium equation. However, since t
heavier molecule has lower velocity at a givenK, it is ex-
posed to a weaker electric field in the comoving fram
Therefore, one could expect its energy levels to be less
turbed and its effective mass to be closer to the zero-fi
value,NmH .

Because of these uncertainties, we do not include HN in
our study but restrict ourselves to the atomic phase. Ne
theless, we include ground-state H2 molecules in order to
determine the validity domain of our results.

B. Free-energy model

Our free-energy model is a straightforward generalizat
to the magnetic case of the model presented in Sec. II B

F5F id
~e!1F id

~p!1F id
neu1F rad1Fex

C 1Fex
neu. ~46!

The ideal electron and proton free energiesF id
(e) andF id

(p) are
derived in Secs. III A 1 and III A 2, respectively.F rad is given
by Eq. ~11!. The Coulomb partFex

C has been discussed i
Sec. III B. Now let us consider the ideal and nonideal co
tributionsF id

neu andFex
neu brought about by the bound specie

Since the quantum-mechanical characteristics of an a
in a strong magnetic field depend in a nontrivial way on
transverse pseudomomentumK' , the distribution of atoms
over K' cannot be written in a closed form, and only th
distribution overKz remains Maxwellian. Letpsn(K')d2K'

be the probability to find an atom with given (s,n) in an
elementd2K' near the pointK' of the transverse pseudo
momentum plane. For the Maxwell distribution, we wou
have psn(K')5(2p\)22lH

2 exp@2K'
2/(2mH)#. In the gen-

eral case, the number of atoms in an elementd3K of the
pseudomomentum space is

dN~K !5Nsn

lH

2p\
expS 2

bKz
2

2mH
D psn~K'!d3K, ~47!

whereNsn5*dNsn(K ) is the total number of atoms with th
specified discrete quantum numbers. The distribut
Nsnpsn(K') is not given in advance but should be calculat
self-consistently by minimization of the total free energ
including nonideal terms.
-
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It is convenient to introduce deviations from the Maxwe
Boltzmann distribution through the occupation probabiliti
wsn(K'):

psn~K'!5S lH

2p\ D 2 wsn~K'!exp@bxsn~K'!#

Zsn
, ~48!

Nsn /NH5Zsn /Zw , ~49!

where

Zsn5
lH

2

2p\2 E
0

`

wsn~K'!ebxsn~K'!K'dK' , ~50!

Zw5(
sn

Zsn . ~51!

The number of atoms per unit phase-space cell eq
@dN(K )/d3K#(2p\)3/V. Calculation of (U2TS) for this
distribution gives

F id
H5kBT(

sn
NsnE $ ln@nsnlH~2p\!2psn~K'!#

212bxsn~K'!%psn~K'!d2K'

5kBT(
sn

NsnE lnFnsnlH
3 wsn~K'!

exp~1!Zsn
Gpsn~K'!d2K' .

~52!

The contribution of molecules should be added to this
pression. We estimate it taking into account only the m
ecules in their ground state. This is an acceptable appr
mation atB*1012G, because the energies of different typ
of molecular excitations are not much smaller than the e
tronic excitations of the atoms@61# ~contrary to the zero-field
case!, so that excited levels cannot give a large contribut
to the molecular IPF at those relatively low temperatu
where the molecular fraction is large@20#. We also neglect
the ~unknown! motional modification of the molecular spec
trum, as noted in Sec. IV A 2.

Thus, we include in the ideal free energy of the bou
speciesF id

neu the term

F id
H25NH2

kBT@ ln~nH2
lH2

3 !212xH2
#, ~53!

wherexH2
52x00(0)1Q2 is the molecular binding energy

and Q2 is the dissociation energy fitted as function ofg in
@20,61#.

The nonideal partFex
neu is calculated in the hard-spher

approximation using Eqs.~17!–~19!, where the composite
atomic number isk5(snK') and the obvious generalizatio
of (k includes*psn(K')d2K' . The effective atomic size
l k5 l sn(K') is given by fitting formulas@24#. The effective
size of the H2 molecule in the ground state is estimated
l H2

5@2am
2 1 l z,H2

2 #1/2, where the longitudinal size isl z,H2

' l z01r 0 . Here, l z0 is the longitudinal size of the ground
state H atom fitted in@24#, andr 0'12.7(lng)22.2 is the equi-
librium internuclear separation given in@20#.
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C. Equilibrium conditions

The thermodynamic equilibrium for the free-ener
model ~46! is given by a generalization of the equations
Sec. II C, taking into account the fact that the atomic IPFZw
now includes integration overK' . In particular,]Fex/]Nk
in Eq. ~23! is replaced by a functional derivative.

In the conditions studied here, neutral atoms can e
only in the regime of strong magnetic quantization and we
degeneracy. Therefore it is convenient to write the gene
ized Saha equation using Eq.~34! and describe the devia
tions from it by a separate factorL. For the ideal free energy
of protons, we use Eq.~35!, and the one for the atoms i
given by Eq.~52!. Thus the generalized Saha equation re

nH5npne

lple~2pam
2 !2

lH
3 @12exp~2b\vcp!#ZweL,

~54!

where

L5bme2 ln~2pam
2 lene!1b

]me

] ln ne
2

]Pe

]ne
~55!

allows for deviations of the exact value ofF id
(e) from that

given by Eq.~34! due to electron degeneracy and populat
of excited Landau levels. The distributions of atoms over
discrete quantum numbers and over the transverse pse
momenta are given by Eqs.~49! and ~48!, respectively.

The occupation probabilities can be presented as a p
uct of two terms that arise fromFex

C andFHS:

wsn~K'!5wCwsn
HS~K'!. ~56!

Hereafter, we excludeNe from our formulas by explicit use
of the electroneutrality conditionNe5Np . Then the Cou-
lomb factor reads

ln wC5b
]Fex

C

]Np
52 f ex

C 1
2

3 S ] f ex
C

] ln G
2

] f ex
C

] ln r s
D , ~57!

where f ex
C (r s ,L)[bFex

C /(2Np) is described in Sec. III B. In
the Debye-Hu¨ckel limit, wC is given by@32#

ln wDH
C 52A8pnp~be2!3. ~58!

The hard-sphere factor reads

ln wsn
HS~K'!5

~12h/2!ln wsn
~0!~K'!25h213h3

~12h!3 , ~59!

where lnw(0)5(]/]Np2]/]Nk)@4Ntoth# is the low-density
limit of lnwHS andh is the packing fraction~18!. Explicitly,

ln wsn
~0!~K'!52

4p

3
$~nH1np!l sn

3 ~K'!1nH2
@ l sn~K'!1 l H2

#3

13nH@ l sn~K'!^ l 2&1 l sn
2 ~K'!^ l &#%, ~60!
st
k
l-

s

e
do-

d-

h5
p

3NtotV
@NH

2 ~^ l 3&13^ l 2&^ l &!1NHNp^ l
3&1NHNH2

~^ l 3&

13^ l 2& l H2
13^ l & l H2

2 1 l H2

3 !1NpNH2
l H2

3 14NH2

2 l H2

3 #,

~61!

where

^ l k&[
1

NH
(
sn

NsnE l sn
k ~K'!p~K'!d2K' . ~62!

The dissociation equilibrium is given by Eq.~25!, where
Zw2 is replaced bywH2

exp(xH2
) andZw is modified accord-

ing to Eqs. ~50! and ~51!. From Eq. ~26! we obtain wH2

5(wC)2wH2

HS, where

ln wH2

HS5
~12h/2!ln wH2

~0!215h219h3

~12h!3 , ~63!

ln wH2

~0!52
4p

3
@nH~3^ l 2& l H2

13^ l & l H2

2 2^ l 3&!1~nH1np16nH2
!l H2

3 #. ~64!

A solution of Eqs.~54!–~64!, supplemented by the sto
ichiometric constraintnp1nH12nH2

5n0 , yields the equi-
librium abundances and the free-energy value. The solu
is sought by an iteration procedure, in analogy with the ze
field case described in Sec. II C, and the EOS is obtai
from Eq. ~27!. In the strongly quantizing magnetic field an
in the nondegenerate regime, the EOS is a sum of three
lytic terms: the ideal termPid5ntotkBT1(4s/3c)T4, the con-
tribution due to the Coulomb nonideality given by derivatio
of the fit described in Sec. II B, and the hard-sphere con
bution PHS54h(12h/2)(12h)23ntotkB T.

V. RESULTS

A. Distribution of plasma particles

1. Occupation numbers

Figure 5 displays the distribution of the atoms over qua
tum states given by Eq.~49! at B51012 G and 1013 G, T
5106 K, and at two relatively low densitiesr
50.001 g cm23 and 0.1 g cm23. The left panel shows the
relative occupation numbers for the tightly bound statesn
50, for different quantum numberss. The distribution is
broader for higher density. This apparently surprising feat
is easily explained by the presence of the third quantum
rameterK' , in addition to s and n. At low density most
atoms reside in the states with large values ofK' because of
the large statistical weight of such states, which all havs
50 ~Sec. IV A 1!. At higher density, these strongly dece
tered states are removed by excluded-volume effects, and
distribution overs grows broader. Conversely, on the neig
boring panel we observe a narrower distribution overn
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FIG. 5. Distribution of atomic occupation
numbers atT5106 K for the magnetic field
strengthsB51012 G and 1013 G ~indicated!. For
each value ofB, the distribution over the quan
tum numbers at n50 and overn at s50 is
shown for two density values:r50.001 g cm23

~hatched histograms! and 0.1 g cm23 ~shaded his-
tograms!.
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at higher density, because the excluded-volume effects el
nate the hydrogenlike states. In the next section we shall
that ultimately, at still larger densities, only the groun
centered state survives (s5n50, K',Kc).

The right two panels demonstrate the effect of increas
B to 1013G. Due to the larger binding energies, the distrib
tion at r50.1 g cm23 has become narrow, with more atom
concentrated in the ground state. However, at the lower d
sity, the distribution overn has changed weakly, since th
increase of binding energies is accompanied by a decrea
the atomic size~and hence a decrease of the nonideality
fects!.

2. Ionization equilibrium

Figure 6 shows the ionization curves at three values oT
for B51012G. The heavy solid lines represent the total fra
tion of atoms f H5nH /n0 in all quantum states, calculate
according to Eq.~54!. Thin solid lines show the fractionf 00
of atoms in the ground state (s5n50, but anyK'), and the
dashed lines show the fraction of atoms in the centered s
(K',Kc , any s andn!. For reference, triangles display th
zero-field atomic fraction given by Eq.~20!.

We see that a strong magnetic field generally increa
the neutral fraction. At low densities, the excited atoms c
tribute significantly. Since their effective size is proportion
to K' , the integration~50! gives roughlyZsn}n0

22/3; there-
fore f 00 decreases asymptotically asn0

1/3. Because of the
broadening of then distribution ~roughly, maxn}n0

21/6), the
low-density wing of the curve for the total neutral fractio
has a slopef H}n0

1/6, which is very moderate compared
f H}n0

1/2 in the nonmagnetic case~triangles!.
The centered atoms, whose pseudomomentum is lim

from above by the critical valueKc , have a nearly density
independent IPF at lowr. Therefore their fraction behaves a
f cen}n0 , and they disappear much faster at lowr and espe-
cially at highT ~compare the dashed lines in the upper a
lower panels!.

At high densities, on the contrary, the decentered st
become depleted due to the excluded-volume effects, so
the dashed line in the figure merges with the solid one ar
*10 g cm23. At still higher densitiesr*102 g cm23, all ex-
cited states disappear, and only the states5n50 survives.
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The pressure ionization proceeds aroundr
;102– 103 g cm23. The excluded-volume and Coulomb no
ideal effects favor pressure ionization@both wHS and wC in
Eq. ~56! are less than unity#, whereas finite electron degen
eracy hampers it (L.0). Because of the reduced atom
volume, the pressure ionization occurs at densities order
magnitude larger than for the zero-field case@34#. At T
5105.5K, the molecular fraction becomes non-negligible
r;102 g cm23.

Not all of the neutral atoms that contribute to the EO
may be identified spectroscopically. Because of their per
bation by plasma microfields, the atoms that do not sat
the Inglis-Teller criterion form ‘‘optical continuum.’’ An ap-
proximate estimate of the fraction of atoms below the opti
continuum is given by a generalization of the optical occ
pation probabilitiesw̃k ~Sec. II D! to the case of the strong
magnetic field according to Eq.~14! of Ref. @65#. This ‘‘IT’’
fraction is shown by the long-dashed lines. Their rapid d
crease indicates that the atomic spectral features disap
aroundr;10 g cm23, long before pressure ionization.

The approximation of Lai and Salpeter@20#, also shown
in the figure~dotted line!, clearly underestimates the neutr
fraction at low density and overestimates it at high dens
especially at high temperature. At low density, the discr
ancy arises mainly from an underestimation of the dec
tered states because of an incorrect fitting formula to th
binding energies. From a comparison with the dashed lin
Fig. 6, we see that the fraction of centered states can
estimated by the approximation@20# at r,0.1 g cm23 and
T,106 K. At higher T or largerr, the atomic abundance i
overestimated in@19,20# because of neglecting nonideal e
fects. Although the neutral fraction is very significant,
never dominates the plasma at the values ofT andB shown
in Fig. 6, contrary to the prediction of Ref.@20#. ~At T
5105.5K, the maximum isf H50.41 atr'5 g cm23.)

Figure 7 shows the ionization curves for a stronger fie
B51013G. Under this condition, the neutral fraction st
increases. AtT5105.5 K ~top panel!, f H exceeds1

2 at r
.0.1 g cm23, reaching the maximum of 85% atr'10. Most
atoms in this regime reside in the centered ground state.
the other hand, atT5105.5K and r;102– 103 g cm23, the
molecules are the dominant species; hence our present m
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may be not accurate in thisr-T domain.
A comparison with the result by Lai and Salpeter is n

performed forT5106.5K ~the bottom panel of Fig. 7! be-
cause the approximations~3.11!, ~3.12! of Ref. @20# yield a
negative IPF in this case.

At T5105.5K and r*300 g cm23, there appears thermo
dynamic instability (]P/]r,0) leading to a phase trans
tion. The stability is recovered atr*8000 g cm23, where the
plasma is fully ionized. This phase transition is a compl
analogue to the plasma phase transition~PPT! predicted in
the zero-field case by several theoretical models@34,66# but
not yet confirmed in experiment. It is caused by a stro
Coulomb attraction between pressure-ionized plasma
ticles, which contributes negative pressure that cannot
compensated at low temperature until the degeneracy se

FIG. 6. Ionization isotherms atB51012 G and three values ofT
~indicated!: total fraction of atomsf H5nH /n0 ~heavy solid lines!
and the fractions of ground-state atoms~thin solid lines!, the cen-
tered atoms~short-dashed lines!, and the optically identifiable
~Inglis-Teller! atoms ~long-dashed lines!. The dot-dashed lines
show the molecular fractionf H2

52nH2
/n0 , which is below the

frame in the bottom panels. For comparison,f H in the zero-field
case~triangles! and in the approximation of Lai and Salpeter~dotted
lines! is also shown.
t

e

g
r-
e
in.

There is no confidence in the reality of the PPT because
its model dependence. In our case, an additional uncerta
is introduced by the simplified treatment of molecules.

TheB dependence of the atomic fraction at two values
T and two values ofr is shown in Fig. 8. The totalf H is
drawn by solid lines and the ‘‘optical’’~Inglis-Teller! frac-
tion by dashed lines. Triangles in the left panel show
total fraction of atoms atB50 ~it is negligible at r
510 g cm23 on the right panel!. Dotted lines correspond to
the approximation@20# at T5105.5K.

It was found previously@10,11# that the ionization degree
decreases with growingB above ;1012G only at T&5
3105 K but, in contrast to the present results, increases
higher T. This behavior was attributed to two effects: d
creasing phase space occupied by a plasma particle
growing B, which favors ionization, and increasing bindin
energy, which disfavors it. Our present result arises from
motional perturbations of the atoms, neglected in@10,11#:
first, increasingB increases the effective massm' and thus
the statistical weight of the centered atoms, and second
low densities the atomic IPF is further increased due to
decentered states.

FIG. 7. The same as in Fig. 6 forB51013 G. The vertical line in
the top panel separates the region of thermodynamic instability
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FIG. 8. Dependence of the atomic fractionf H

~solid lines! and the fraction of the optically iden
tifiable atoms~dashed lines! on the magnetic field
strength at two values ofr ~indicated in the fig-
ure!, T5105.5K ~upper curves! and 106.5K
~lower ones!. The atomic fraction atB50 ~tri-
angles! and the approximation of Ref.@20# ~dot-
ted lines! are shown for comparison.
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B. Equation of state

Figure 9 presents four pressure isotherms obtained u
the free-energy model described in Sec. IV. For comparis
we also show the fully ionized ideal-gas EOS~Sec. III A!
and the nonmagnetic EOS~Sec. II!. The vertical line bounds
the regionr,rB . Let us first discuss the low-density regim
r&10 g cm23. At T*106 K, all three EOS reduce toP
5n0kBT. At lower temperatures, the pressure deviates fr
this law because of the partial recombination of atoms.
discussed in the previous section, a strong magnetic fi
increases the neutral fraction; therefore the pressure is
duced more significantly compared to theB50 case.

FIG. 9. EOS of partially ionized atomic hydrogen atB
51012 G ~solid lines! compared with the EOS of fully ionized idea
electron-proton plasma~dotted lines! and the EOS of partially ion-
ized hydrogen atB50 ~dashed lines!. The temperature logarithm
are ~from top to bottom! log T@K#56.5, 6.0, 5.5, and 5.0. The ver
tical line corresponds torB , above which excited Landau leve
become populated.
ng
n,

s
ld
re-

In the intermediate-density range 10 g cm23&r&rB , the
differences among the three considered cases are mos
portant. ForB50, the plasma is fully ionized in this region
and the electrons become partially degenerate, making
EOS stiffer. In a strong magnetic field, the electron deg
eracy is reduced~Sec. III!; hence the ideal-gas EOS is softe
except for densities approachingrB , where the degenerac
sets in and pressure grows rapidly. Partial recombination
Coulomb nonideality lead to a still further decrease ofP. The
pressure ionization discussed above has two opposite ef
on the pressure: the positive ideal-gas contribution of f
electrons appearing in the course of the ionization and
positive nonideal pressure of neutral species compete
the negative Coulomb contribution. At lowT, these effects
may cause the thermodynamic instability mentioned abo
which we observe on the isothermT5105 K. The second
lowest isotherm in the figure is slightly overcritical for th
PPT. The dependence of the critical temperatureTc and den-
sity rc on B can be fitted by simple power lawsTc53
3105B12

0.39 K and rc5143B12
1.18 g cm23, where B12

[B/(1012G). These fits provide an accuracy of a few pe
cent in the considered range of the field strengths
31011G,B,331013G.

At higher densityr*rB , excited Landau levels becom
populated due to the increase of the Fermi energy. Eve
ally, at r@rB , the nonmagnetic EOS is recovered.

Figure 10 demonstrates the effects of the strong magn
field on the density exponentxr5(] ln P/] ln r)T . Although
the pressure approaches the nonmagnetic value atr.rB , the
effects of magnetic quantization remain quite prominent
the derivativexr , as shown by the curveB51012G in the
figure. Consecutive population of excited Landau lev
causes the oscillations ofxr and other second derivatives o
F around their nonmagnetic values. The regime where th
oscillations are significant is calledweakly quantizing@2#.

The effects of a strongly quantizing magnetic field on t
reduced heat capacityCV5kB

21(]U/]T)V divided by the
number of plasma particles,Ntot5Ne1Np1NH1NH2

, are
shown in Fig. 11. In the nonmagnetic case~dashed line!, the
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classical valueCV /Ntot5
3
2 is slightly exceeded at lower den

sities because of the thermal ionization of the atoms, and
reduced to smaller values at higher densities because of
tron degeneracy.

In strong magnetic fields, the heat capacity is modifi
due to several effects. In the low-density regime,CV is re-
duced compared to the nonmagnetic value because o
quantization of the transverse motion of electrons and p
tons. The strongly quantized electrons have only one m
tional degree of freedom, so that their contribution reduce
CVe

5 1
2 Ne . When protons are nonquantized and the plas

is fully ionized, this amounts toCV /Ntot51. In the general
case, the contribution of free spinless protons would be

CVp
~1!5F1

2
1S b\vcp

2 sinh~ b\vcp/2! D 2GNp , ~65!

which tends to1
2 at b\vcp50.732B12/T6@1, where the pro-

tons are strongly quantized. The interaction of a magn
field with proton spin, according to Eq.~36!, yields

CVp
~2!5F bgp\vcp

4 cosh~bgp\vcp/4! G2

N0 , ~66!

which vanishes in the limiting cases of\vcp!kBT and
\vcp@kBT. In the latter case,CV /Ntot would tend to1

2 for
the fully ionized plasma. In Fig. 11, however, this does n
happen because of the contribution of neutral atoms, wh
are subject to thermal ionization in thisr-T-B domain. On
the contrary,CV increases with increasingB, since the neu-
tral fraction becomes larger. The two humps visible on e
magnetic isotherm correspond to the regions of the pres
destruction of the first excited atomic states51, n50 and
the ground states5n50, respectively. In the latter case,CV
even exceeds the nonmagnetic value, because of the de
onset of degeneracy. Only with density approachingrB is the
zero-field value of the heat capacity recovered.

FIG. 10. Density exponentxr5(] ln P/] ln r)T at T5106 K
without magnetic field~dashed line! and in strong magnetic fields o
various indicated strengths~dot-dashed and solid lines!.
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This illustrates the main effects of a strongly quantizi
magnetic field on a partially ionized hydrogen plasma. Ot
thermodynamic quantities, obtained within the framework
the present model, experience similar profound modifi
tions.

VI. CONCLUSIONS

We have developed a thermodynamic model of hydrog
plasma in strong magnetic fields, making use of the availa
quantum-mechanical results for the fully ionized plasma a
for the hydrogen bound species. Applicability of the dev
oped model is limited to the temperaturesT, densitiesr, and
magnetic field strengthsB at which formation of molecules
and other bound species more complex than the H at
may be neglected. This condition holds, for instance, atB12

&10 and T*106 K ~any r! or at T*105 K and r
&104(T6 /B12)

3 g cm23. Furthermore, although the theor
presented in Sec. IV is rather general, our numerical res
in partially ionized regions are restricted toB12>0.7, be-
cause fitting formulas@24# for quantum-mechanical charac
teristics of the atoms moving in magnetic fields have be
derived under this condition. This restriction is fulfilled fo
the majority of neutron stars. For laboratory field streng
~at g!1), perturbative methods may be sufficient.

Calculations in the frames of our model show that t
magnetic field effects strongly modify the thermodynam
functions and phase diagram of the plasma, in particular
partial ionization region. The abundance of atoms is sign
cant in the considered domain of temperaturesT
;105– 106.5K and magnetic field strengthsB;1012– 1013G
at densities up tor;102– 103 g cm23, contrary to the zero-
field case. At relatively low densities (r&1 – 100 g cm23, de-
pending onB andT!, the decentered atomic states possess
a large constant dipole moment are significantly populat
Since these values ofr, T, and B are typical of the atmo-
spheres of isolated neutron stars, the physical effects
cussed above are expected to affect the spectra. It has
shown@65,67# that the presence of a nonionized compon
and, in particular, decentered atoms should produce obs
able absorption and thus necessitate a modification of pr
ous fully ionized atmosphere models@68#. Work in this di-
rection is under way@69#.

FIG. 11. Normalized heat capacity at the sameT andB values as
in Fig. 10.
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